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Abstract

Describing accurately damage in degrading reinforced red@cstructures is of major interest in the
context of durability analysis and maintenance. Due to moongesources of uncertainty in the degra-
dation models, a probabilistic approach is suitable. Thabglilistic description of thextentof
damage requires introducing random fields for modellingsghetial variability of the various param-
eters. In this paper, a general formulation for the spakitdré of damage is set up. This formulation
allows to derive closed-form expressions for the mean vaheestandard deviation of the latter. Ac-
cordingly, practical computations can be carried withoutdiscretizing the input fields. In order to
check the accuracy of the proposed implementation, Monti Ganulation (MCS) of the extent of
damage is also carried out, using an efficient random fielttetization technique known as EOLE.
Both approaches are compared to study the extent of rebaosiom in a RC beam subjected to con-
crete carbonation. Furthermore, the Monte Carlo approdotvato compute the full probabilistic
content on the extent of damageg. histograms. It was shown that these histograms have a non
trivial shape, in the sense that probability spikes existtie bound values (case of undamaged and
fully damaged structures). The influence of the auto-catieh function of the various input random
fields and that of their scale of fluctuation is finally studied

Keywords : extent of damage / space-variant reliability / time-varigeliability / degradation models
/ concrete carbonation / rebars corrosion / random fieldsL/E@ethod /

1 Introduction

Probabilistic models of concrete degradation have beemsitely studied in the past ten years. The
most important degradation mechanism considered in thliire is the corrosion of the rebars due
to chloride ingress in the concrete mass or concrete catibond his mechanism is of utmost impor-
tance in the ageing of bridge structures that are submitteéiting salts, or any structure in a marine
environment [1, 2, 3, 4]. Authors have focused on the pradiobf the initiation time for corrosion
and / or the estimation of the residual strength of strusture

Recent advances in this field have pointed out the necessityodelling the spatial variability of
the model parameters in order to be able to characterizegnipthe probability of degradation, but



also the extent of damage [5, 6, 7]. This extent of damageeis#tural variable that characterizes
the global state of damage of the structure, and that maydmkinsoptimizing maintenance policies
[5, 8,9, 10].

In this paper, a general formulation for spatially variablgradation models is proposed. The so-
calledpoint-in-spaceand space-varianteliability problems are recalled in Section 2 [11]. Ther th
extent of damage is given a proper definition, from which wi! derivations are carried out in order
to compute the first two statistical moments (Section 3).clffit implementations of these formulae
(based on the First Order Reliability Method (FORM) and Mo@arlo simulation) are proposed in
Section 4.

In order to evaluate the accuracy of the analytical approachalternative framework for the direct
estimation of the extent of damage by Monte Carlo simulaigoproposed. This requires the use
of random field discretization technigques and the postgssing of the simulation results. Both ap-
proaches (called “analytical” and “field discretizatiom’the sequel) are compared on an application
example, which considers carbonation-induced corrogtamally, the results of Monte Carlo simula-
tion allow to plot histograms of the extent of damage, whaseiic shape is studied.

2 Spatially varying probabilistic degradation models

2.1 A class of degradation models

The degradation of structures in time may be defined in a lsease as the loss of certain properties as
the result of chemical, physical or mechanical processasymabinations thereof. Concrete structures

are submitted to many degradation mechanisms, includimgrsecorrosion due to chloride ingress or

concrete carbonation.

The deterministic models for these degradation mecharasenssually based on semi-empirical equa-
tions that yield a so-calledamage measur® (considered here as a scalar quantity) as a function of
parameterg and time:

D(t) = M(z,1) 1)

Examples of damages measures are:

e crack width, which may be modelled as a function of the caorosate of the rebars, the con-
crete cover, the rebars diameter, etc. [5],

¢ loss of rebars diameter, which depends on the corrosiorarat¢he time for initiation of corro-
sion, the latter being modelled specifically in case of apr carbonation-induced corrosion
[12]

o fatigue damage due to repeated application of stress cynteghe structure [13].

In order to assess the durability of the structure with respea given category of damage, a limit
value D is usually prescribede(g. maximal acceptable crack width, etc.). Note that the damage
measure in Eq.(1) is aincreasingfunction of time. Indeed, the degradation phenomena ceresitl

in this paper are supposed to be irreversible.



2.2 Local reliability problem

The model parameters in Eq.(1) are in practice uncertairshadld be modelled by random variables
with prescribed joint probability density function. In$htase, the damage measure becomes random.
Assessing the state of the structure becomes a reliabititylem.

Let us denote byZ = {73, Zs, ..., Z)s } the set of random variables describing the randomness in the
degradation model. The failure criterion under considenas mathematically represented biirait
state functiony(Z, t) defined in the space of parameters at time instanf0, 7] in a way such that:

e g(Z,t) > 0 defines thesafe statg
e g(Z,t) < 0 defines thdailure state
e g(Z,t) = 0 defines thdimit state surface

Denoting by fz(z) the joint probability density function of random vectdr, the time-dependent
probability of failure of the structure reads:

Pty = [ fal)dz @
9(z,t)<0
or equivalently:

Pr(t) = /RM Lig(z<0}(2) f2(2) dz = E [1{4(z.n<0} (2)] (3)

wherely, . <oy (2) is the indicator function of the failure domain in the spatearameters.

In the context of degradation models, the limit state fuorcghall be referred to as the damage crite-
rion in the sequel. As an example, if it is defined by a fixedghodd D on the damage measure, the
limit state function may be of the form:

9(Z,t)=D—-D(t)=D - M(Z,1) (4)

We further suppose that the input paramet&rare not time-dependenite. that they modelled by
random variables and not by random processes. As a consegjuba reliability problem (2), which
appears time-dependent, is actually equivalent to a sefiime-invariant problems, whereis a
dummy parameter. Indeed, due to the above assumption arfddhthat the damage measure is
increasing in time, any trajectoryzo, t) computed from a realizatiog, of the input random vector
is monotonically decreasing with time. The time-dependapiect of the problem over a time interval
[0, 7] is taken care of by solving théme-invariantproblem at the final instant. Note that the
latter assertion may not hold anymore if some input pararaétey. environmental conditions) were
modelled by random processes.

In all but academic cases, the integral in Eqg.(2) cannot lmepated analytically. Thus numerical
methods have to be employed. Monte Carlo simulation (MC8Mersatile tool that takes advantage
of the formulation in Eq.(3), where the probability of faiuis viewed as the expectation of a function
of the parameters. A sample set of input paramsdters. .., zn.,,, } iS generated according fg;(z)

and the empirical mean dfy, . <o} (2;) is computed. This approach allows to derive confidence
intervals for the probability of failure.

The main drawback of Monte Carlo simulation is that the nuntbsamplesVg;,, required for a fair
prediction becomes untractable when the probability dfifaiis small. Thus approximate methods
such as FORM/SORM have been developedesgd14] for a detailed presentation.
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2.3 Space-variant reliability problems

The above probabilistic degradation model is referred eas-dimensionalin the sense that it does
not involve any spatial coordinate system attached to thetsire. It thus implicitely assumes a
complete homogeneity of the degradation all over the stractin other words, for a given realization
z¢ of the input random vector, tHell structure will be either in the safe state (undamaged) dnen t
failure state (fully damaged). This is of course a coarsekiitation of the real world. Moreover,
this does not allow to characterize the extent of damage. dticeas this issue, additional notation
shall be introduced.

Suppose that the structure under consideration occupiedusng D C R?, whered = 1,2 or 3.
The casel = 1 corresponds to modelling beam or arch structures, the £ase to plate or shell
structures. In order to address the problem of spatial biitia the input random vector in Eq.(2)
should be replaced by/ multivariate scalar random fields gathered in a ve&é&), wherex € D

is the spatial coordinate. The probabilistic descriptibthese fields is yet to be specified. Note that
in practice the following assumptions usually apply:

o the spatial variability of certain componentsZfis negligible. They are accordingly modelled
as random variables. As a consequence, only a small numiseatsfr random fields have to
be specified in practice. However, for the sake of simpli¢hg most general notatiad(x) is
kept in this section.

¢ the random field components a@memogeneoufields. This is due to the fact that the size of
the structure is usually small compared to the scale of faiin of the parameters driving
the degradationg(g. environmental parameters such as surface chloride or ratimxyde
concentration, etc.).

In the space-variant context, the limit state function in(Egshould be replaced by:
9(Z(x),t) =D - M(Z(x),t) (5)

The point-in-spaceprobability of failure is defined in each € R? as follows:
Py(z,t) = / fz(@)(2) dz = E [1{y(z(2), <0} (2)] (6)
9(Z(z),1)<0

It is computed by freezing: (i.e. replacing the random fiel& (x) by the corresponding random
vector) and, and by applying standard time-invariant reliability mads (MCS, FORM/SORM, etc.).
Note that if the random fiel& (x) is homogeneouysthen the same reliability problem is posed at
whatever the position of the point under consideration. Thus the point-in-space probabilfty
failure isindependenbf x in this case.

The space-varianiprobability of failure is defined, for any subdomaihc D by [11]:

PiH ) =Pz eH , g(Z@), t)go>=P<Ug<z<m>, t)go) (7)

xeH

This quantity is the “spatial” counterpart of the so-caldanulativeprobability of failure in time-
variant reliability problems [15].



When the damage measure is related to serviceability ofttbetgre €.g. apparition of cracks or
rebars loss of diameter) and not directly related to theapsk of the structure, none of the above
guantities are sufficient to characterize the global staégjeing of the structure. Indeed, Eq.(6) is by
definition a local quantity (at point). Eq.(7) refers to the probability that thereasleastone point

in subdomairt+ where the local damage criterion is attained. This prokighd likely to be close to
one, without meaning that the structure is close to stratfailure.

In contrast, theextent of damages of major interest, especially for the comparison of maiaince
policies, see.q.[5, 8]

3 Extent of damage

3.1 Definition

The extent of damage is defined at each time ingtastthe measure of the subdomairfoin which
the local failure criterion is attained:

E(D,t) :/Dl{g(Z(m),t)go}(iv)dw (8)

Note that(D, t) is a scalar random variable since the integral awvés defined for each realization

of the input random field, say(x). It is positive-valued and is by definition bounded by theuvoé

of the structure irR? denoted byD|. Again, due to the monotony of degradation phenomena, each
realization of€(D, t), saye(D, t) is a continuously increasing function of time.

3.2 Mean and variance

By taking the expectation of Eq.(8)€. with respect taZ), one gets the following expression for the
mean value of the extent of damage:

E(D,t)=E[E(D,1)] = /DE [119(2(2), <0} (®)] dz )

By comparing the integrand of the above equation with Eqdi6é gets:
E(D,t) = / P¢(x, t) dx (10)
D

In case of homogeneous input random field, this integranddegendent ok, as explained above.
Thus:

E(D,t) = Ps(xo, t) - |D| (Homogeneous case) (11)
where the point-in-space probability of failure is compLi& any pointeg € D.

The above equation has the following interpretation: ttegpprtion of the structure where the damage
criterion is attainedife. £(D, t)/|D]) is, in the mean, equal to the point-in-space probabilitiaiire.
This remark has two important consequences:

e it is not necessary to introduce the complex formalism oflcan fields when one is interested

only in the mean value & (D, t). Only the description of the input randovariablesgathered
in vector Z is required.



e the mean proportion of the structure that is damaged is entgnt of the correlation structure
of the input random field (x), if the spatial variability is modelled. This is a valuabésult,
since the determination of the correlation structure iBadift and hardly done in practice, due
to the lack of data (the auto-correlation functions andrtharameters being often chosen from
“expert judgment”, see.g.[5, 8]).

In order to better capture the probabilistic contenE@D, ¢), it is useful to study the variance of the
extent of damage. By definition, this quantity reads:

Var [£(D,1)] = E [£2(D,t)] — £(D, 1) (12)

From the definition in Eq.(8) one can write:

E4(D,t) = ( /D 1{g<z<w>,t>30}(ﬂc)dw> ' ( /D 1{g<z<w>,t>so}($)dw>

The integrand is equal to one if and only if the limit stateduon takes negative values at both
locationsx; andx,. Thus (13) may be rewritten as:

(13)

EX(D,t) = /D /D L{g(Z(21), 1)<0 N g(Z(x2), t)<0} (Z1 , T2) dT1dT2 (14)

Hence:

E2Dt // t) <0Ng(Z(x2), t) <0) drydxs (15)
This equation is similar to the results obtained by Koo andereghian [16] for the excursion time
in the context of first-passage problem in time-variantatality analysis.

Here again, the assumption of homogeneity allows to simpiié result. Indeed, the integrand in
Eq.(15) depends only oy — x| in this case, meaning that it is an even functior{ef — =), j =

, d. One can prove that the above double integral may be redocesihgle integral (see details
in Appendix A) and further simplified. For the sake of claritgsults are reported here separately for
d=1andd = 2.

e For abeam of lengtli (d = 1, |D| = L), the variance of the extent of damage is:
1 _
Var [E£(D,t)] = L2/ P(g(Z(0),t) <0Ng(Z(Lu),t) <0)(2—2u)du—E(D, t)2 (16)
0
e For arectangular plate of dimensiofis;, L2), the variance of the extent of damage is:

Var [£(D, t)] L2L2// ),t) <0Ng(Z(Lyu, Lyv),t) <0)...

(2 —2u)( 2—2v)dudv a7

_ED1)

The integrals in Egs.(16),(17) are rather easy to evaluat® $oth the integration domain and the
integrands are bounded. A typical Gaussian quadraturdld]ean be applied, as shown in the next
section.



3.3 Conclusion

In this section, the mean and standard deviation of the egfafamage have been derived in a closed
form. The obtained formulae dwt require that the random fields describing the spatial vaitiabf

the problem are discretized. It has been shown that the nmedaa of the extent of damage does not
depend on the correlation structure of the input randomdidhl case of homogeneous input, it may
be computed from a single point-in-space analysis (Eq.(11)

In case of 1D or 2D-rectangular structures, the computatfdhe variance further reduces to a single
integral overD instead of a double integral. These cases are of great gahatiportance, since
the majority of civil engineering structures may be decosgubinto beams and plates. Eq.(17) is
also applicable to shell structuresd. cooling towers) as soon as the geometry of these structsires i
parametrized by a rectangular domadrg.{(0, 2), 6 € [0,2 7], z € [0, Zmaz|}-

4  Numerical implementation

As explained above, the mean and standard deviation of teatedf damage may be computed from
Egs.(11),(16),(17) without discretizing the input randfdeids. The practical implementation of these
equations is described in the next subsection.

In order to assess the accuracy of the proposed approactedhiés have to be compared with the
Monte Carlo simulation of the extent of damage. For this psep the input random fields shall be
discretized and simulated. This is described in the secertisubsection.

4.1 Analytical approach

We consider here the computation of mean and standard ievaitthe extent of damage (also called
damage lengtlin the one-dimensional case) by the analytical equatiorss(E®),(16). The extension
to (17) is straightforward.

As shown in the previous section, Eq.(11) reduces to solitigne-invariant point-in-space reliability
problem. The first order reliability method (FORM) may bedi$ar this purpose.

In order to evaluate Eq.(16), note that the probability urttie integral is nothing but the parallel
system failure probability associated to the eveft&Z (0),¢) < 0} and{g(Z(Lu),t) < 0}. This
probability may be computed using the FORM method appligubtallel systems:

P (9(Z(0),t) <0Ng(Z(Lu),t)) = Po(=5(0,1), =B(Lv, 1), pg(Lu, 1)) (18)
In this equation, the following notation is used:

e Oy(x,y,p) is the binormal CDF;

e 3(0,t) (resp.((Lu,t) ) is the point-in-space reliability index at abscissa: 0 (resp. abscissa
x = Lu). Note that both values are equal when homogeneous field®asidered.

o py(Lu,t) = a(0,t) - a(Lu,t) is the dot product of the-vectors obtained by FORM. Remem-
ber that thex-vector is the unit vector in the direction of the design pairthe standard normal
space.



Eq.(18) is practically evaluated as follows:

e apoint-in-space FORM analysis is carried outat 0, replacing the random fields by a set of
random variables having the same PDF, Z4y/ .

e another point-in-space FORM analysis is carried out at Lu, replacing the random fields by
another set of random variables having the same PDFZ$&y If some componentg’; are
actuallyrandom variablegin other words, fully correlated fields), tlsamevariables are used
in both analysis ZJ(.U = Z](.Q)). Otherwise, the components @2 corresponding to “true”
random fields are correlated to the corresponding compsr (1) using the random field
autocorrelation matrix.

o the reliability indices andx-vectors obtained by both analysis are reported in Eq.(18).

As a conclusion, the evaluation of Eq.(18) requires two FCaridlysis. Finally, the integral in Eq.(16)
may be evaluated using a Gaussian quadrature formula. Tiepgbe of Gaussian integration is to
approximate the integral by a weighted summation:

[rome [ o) o520 (58)

i=1

where{(w;, s;), i =1, ..., K} are the integration weights and points [17]. Again, the resiten of
the latter equation to two-dimensional problenis=( 2, see Eq.(17)) is straightforward.

4.2 EOLE method for random field discretization

In order to compute the mean and standard deviation of tlemesf damage by Monte Carlo simula-
tion, the simulation of spatial realizations of the damagteidon is required. This can be done after
a proper discretization of the input random fields. Expansion optimal linear estimatianethod
(EOLE) [18] is used for this purpose in case of Gaussian nanfields (it is assumed that the com-
ponents of the vector input random field are independentnal then be also applied to discretize
fields obtained by translatioe,g.lognormal fields. The method is based on the pointwise regnes
of the original random field with respect to selected valuethe field, and a compaction of the data
by spectral analysis. The method is now recalled.

Let us consider a scalar Gaussian random fiéla:) defined by its meam(x), its standard devi-
ation o(x) and its autocorrelation coefficient functigriz,, x2). Let us consider a grid of points
{z1, ...xn} in D and denote by the random vectof H(x), ... H(xx)}. By construction,x is a
Gaussian vector whose mean vajugand covariance matrix, , read:

pl = ;) (20)
(Exx)i; = Cov|H(wm;), H(x;)] = o(x;) o(x5) p(wi , ;) (21)

Theoptimal linear estimatiofOLE) of random variable? () onto the random vectoy reads:

A~

H(z) ~ H(@) = p(@) + Sy (@) - Sih- (x - py) (22)
where(.)" denotes the transposed matrix 8g, () is a vector whose component are given by:

3%, (@) = Cov [H(z) , x;] = Cov [H(z), H(z;)] = o(x)o(;) pla , ;) (23)
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Let us now consider the spectral decomposition of the camae matrix3, , .
Swti=Ni¢;, i=1...,N (24)

This allows to linearly transform the original vectgr
N
X =t + > VA& o (25)
=1

where{¢; ,i = 1, ... N} areindependenstandard normal variables. Substituting for (25) in (22) an
using (24) yields the OLE representation of the field :

N

'y 5@ / .

H(x) =p(x) + bi' - Tz (T) (OLE expansion) (26)
; VA Hiz)x

The series can be further truncated aftet NV terms, the eigenvalues being sorted first in descend-
ing order. This yields the EOLE expansion:

. fz / .
Hx)=plx)+ Y ——=0¢i By, () (EOLE expansion) (27)
> S0 B

The variance of the error for the EOLE discretization reads:

2

Var [H(@) - f(@)] = 0(@) = 3. 1 (¢ Enia) (@) (28)

i=1

The above equation allows to check that the grid densiyrfumber of pointsV) and the number of
termsr are large enough to attain a prescribed accuracy in theetisation. Details on how choosing
these parameters are given in [19].

Example Letus consider a homogeneous univarigte-(1) standard normal random field (with zero
mean and unit standard deviation) having one of the follgvaintocorrelation coefficient function:

e Type A:
paler,22) = exp (— o ) (29)
A
e Type B:
2
pB(x1,22) = exp (— (xlg x2> ) (30)
B
e Type C:

N sin((wl — .%'2)/@0)
pc(z1,x2) = (51 —72) /0 (31)

In order to study the influence of the shape of the autocdiweldunction, it is desirable to find an
equivalence between the various parameters. The usualradaghescale of fluctuatiorproposed
by Vanmarcke [20]:

0=2 /OO p(0,z) dx (32)
0
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Figure 1: Autocorrelation coefficient functions (scale ottuationd = 2)

For the three types of autocorrelation coefficient fundigiven above, the results are:

0p =214y
O =+7lp (33)
0c =mlc

The three autocorrelation coefficient functions are ptbiteFigure 1 ford = 2. The random field is
now discretized over the intervale [0, 10] using/N = 81 points (regular grid with stepsize equal to
10/80 = 0.125). A numberr = 16 terms is retained in the EOLE expansion. Figure 2 preseats th
evolution of the variance error (Eq.(28)) as a function: @ [0, 10] for the three functions. Obviously
the discretization scheme is not accurate enough for Typerfelation (maximal error of 16.7%),
accurate enough for Type B (maximal error of 0.1%) and alreratt for Type C (maximal error of
10~ 13%).

4.3 Monte Carlo simulation of the extent of damage

Once an input random field, s&;(x) has been discretized using EOLE, a realization of the field
Z3(z) (i.e. a usual function ofc € D) is obtained by simulating a set ofstandard normal random
variables, say¢y, ... £2}, and substituting for them in Eq.(27):

o

,
Z(x) = p(@) + Y = bi' Tz, () (34)
J ; Novaa (@)X

The above spatial realizations can then be used to get lspedlzations of the limit state function
g9(Z°(x),t) attime instant. Each realization shall be post-processed in order to cterpa realiza-
tion of the extent of damag®, (D, t).
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Figure 2: Variance of the error of discretization for vagoautocorrelation coefficient functions
(x €0,10], 6 =2, N =81, r = 16)

In the recent literature on space-variant probabilistimage models, semg. [5, 6, 8], the so-called
midpoint approachMP), originally proposed in [21], has been used to diszeethe random fields
and post-process the extent of damage. It is important tdlréhat this crude approach is by far less
accurate than the EOLE decomposition, even when using a taugiberN,,;p of elements in the
midpoint approach (the comparaison of accuracy can be foupid, 19]).

Moreover, the midpoint approach also provides a rough esitim of the extent of damage for each
trajectory. Indeed, ifV);p elements have been used for the discretization, the extetanoage for

a given realization of the input fields is estimated%ﬂ% whereNp is the number of elements
where the damage criteriof( Z°(x), ¢) is attained. AsN,p is limited in practice, since it is also
equal to the number of random variables required for dimngt each field, the above estimate may
be crude.

In contrast, the EOLE method, which provides smooth retidima of the field may be post-processed
efficiently. In the following, the one-dimensional & 1, D = [0, L]) case is presented, the extension
to larger dimensions being straightforward, althougheyteéchnical. Each realization of the damage
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criterion is stored in an array of sizg+ 1 corresponding to the evaluation @fZ°(x), t) at selected
points:

{95 =9(Z2°(jL/Q),t), j=0,..Q} (35)

The damage length is then obtained by screening this ar@yyding to the algorithm summarized in
Figure 3. If, for a givery € [0,Q — 1], g; < 0andg; 1 < 0itis supposed that the failure criterion is
negative forany: € [jL/Q, (j + 1)L/Q] and the damage length is increasedby). If g changes

its sign betweeny L/Q andj + 1)L/Q, a linear interpolation allows to compute the portion of the
latter interval whergy is negative. Of course) has to be selected in such a way that the trajectories
do not change sign twice within an interval of the foppl./Q , (7 + 1)L/Q)], i.e. consistently with

the scales of fluctuation of the input fields.

Initialization:
ED,t)=0 ; AL=L/Q

Forj =0,Q -1
if (g; <0andgj+1 <0) then &,(D,t) — &(D,t)+ AL

. AL
if (95 <0andg;y1 >0) then &,(D,t) — &(D,t) + 92k
9; — 9j+1
- gi+1 AL
if (9; > 0andg;y1 <0) then &(D,t) «— &(D,t) + =————
9j+1 — 95

Figure 3: Algorithm for computing the extent of damage by Mo8arlo simulation

5 Application example: corrosion induced by concrete carboation

5.1 Point-in-space model of carbonation

Concrete carbonation is a complex physico-chemical psottest includes the diffusion @O, into
the gas phase of the concrete pores and its reaction witratbieim hydroxylCa(OH),. The latter
can be simplified into:

Ca(OH)s + COy — CaCO3 + H20 (36)

As the high pH of uncarbonated concrete is mainly due to teegirce of”a(OH ),, it is clear that
the consumption of this species will lead to a pH drop, whigh attain a value of 9 when the reaction
is completed. In this environment, the oxide layer that gxted the reinforcement bars is attacked
and corrosion starts. The corrosion products tend to expaodhe pores of concrete, developping
tensile stresses which eventually lead to cracking [22223,

In practice,C'O, penetrates into the concrete mass by diffusion from theasarfayer. Thus a car-
bonation front appears that moves into the structure. A inmdeomputing the carbonation depth
x. is proposed by the CEB Task Groups 5.1 & 5.2 [25]. The simglifiersion retained in the present

paper reads:
zo(t) = \/%t 37)
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whereDco, is the coefficient of diffusion of carbon dioxide in dry coat,C) is the carbon dioxide
concentration in the surrounding air amds the binding capacityi,e. the amount of carbon dioxide
necessary for complete carbonation of a concrete volunis.slipposed that corrosion immediately
starts when carbonation has attained the rebars. Denotiaghe concrete cover, the time necessary
for corrosion to start, callemhitiation time, reads:

CL€2

Tinit = ———— 38
nat 200 DCOQ ( )
If generalizedcorrosion is considered, the loss of metal due to corrosampproximately uniform
over the whole surface. In this case, Faraday’s law indsctitat a unit corrosion current density (or
corrosion rate) corresponds to a uniform corrosion petietraf x = 11, 6um/year. If a constant an-
nual corrosion rate is supposed, the expression of thegelmmeter as a function of time eventually
reads:

_ (bO if t < Tinst
o(t) = { max|dg — 2icorr £(t — Tinit) , 0] if £ > Thit (39)

Corrosion starts
(1-A) D0 oo Lo Cracking starts
Spalling starts

>

T

Figure 4: Evolution in time of the rebars diameter and asdedistate of damage

Figure 4 sketches the evolution in time of the rebars diametgther with the associated damage on
the structure. From experimental evidence [26, 27], it issilde to associate a valugrepresenting
the relative loss of rebar’s diameter) to a given state ofatga{.e. crack initiation, severe cracking,
spalling, etc.). For instance, a value)ot= 0.5 — 1% is consistent with the apparition of cracks.

In a probabilistic context, the random parameters are tapgpearing in Egs.(38),(39), namely the
coefficient of diffusion of carbon dioxid®co,, the surface carbon dioxide concentratiop, the
binding capacitya, the concrete cover, the rebars initial diametep, and the corrosion current
densityicop:

Z = {DCOQ7 Co,a,e, ¢, Z'corr} (40)

The damage criterion is defined at a given time instant by dhethat the residual rebars diameter
(EQ.(39)) becomes smaller than a prescribed fradtion \) of its initial value:

9(Z,t) = o(t) = (1 = A) do (41)
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Remarking that Eq.(39) rewrites:
¢(t) = min (¢o, do — 2icorr £(t — Tinit)) (42)
for reasonable values othat do not lead to “negative” values oft), Eq.(41) becomes:
9(Z,t) =min (Ao, Ao — 2icorr £(t — Tinit)) (43)
Thus the probability of failure may be interpreted as thad séries system:
Pr(t) =P ({Ado < 0} U{A o — 2icorr £(t — Tinir) < 0}) (44)

As the rebars diameter is positive in nature, the above systent reduces to its second component.
Thus:
Pf(t) =P ()\ ¢0 — 2icorr K:(t — Tmzt) S O) (45)

Following these remarks and using (38)), the limit statefiom (41) eventually reads:

a€2

Z,t) = — 2 S 4
g( ) t) )\ ¢0 ZCO?"T‘ "i(t 2 CO DCOQ ) ( 6)

5.2 Probabilistic problem statement

In order to illustrate the concept of extent of damage dbedrabove, we consider a concrete beam
of length L = 10 m. This beam is reinforced by a single longitudinal reinfogcbar whose initial
diameter is modelled by a lognormal random variaple The concrete cover(x) is a univariate
homogeneous lognormal random field, obtained by exportemtiaf a Gaussian random field, whose
properties are given below. This allows to model the impdidas in placing the rebar into the
falsework.

The parameter$Cy , a} are modelled by lognormal random variables. The coefficdmtiffusion
D¢, is modelled as a homogeneous lognormal random field. Thesiorr current density..,(x)
is supposed to be inversely proportional to the concreterg®ee [6]):

. . €0

icorr(T) = zgorre(x) (47)
In this equationgy = 50 mm is the mean concrete cover ailg., is a lognormal random variable.
The above expression has the following interpretationiabei® .. models the overall uncertainty on
the corrosion rate, whereas its spatial variability is ety correlated to that of the concrete cover.
The mean value of the corrosion rate2i®8 uA/cn?. The parameters describing these six input

quantities (2 random fields and 4 random variables) are gathie Table 1.

5.3 Mean and variance of the extent of damage
The mean value of the damage length is computed by three agps:
e Eq.(11), where the point-in-space probability of failuobtained by freezing the spatial coor-

dinatez (i.e. replacing the random fieldgx) and D¢, (x) by lognormal random variables) is
computed by FORM analysis;
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Table 1: Probabilistic input data

Parameter Type of PDF Mean value Coef. Var. A.c.f
Rebars diametep, lognormal 10 mm 10 % —
Diffusion coefficientD¢o, lognormal  5.107% m?/s 30%  pp(xr,z2)
Surface concentratiofy lognormal 6.2 10~ kg/m?® 30 % —
Binding capacityu lognormal 80 kg/m 30 % —
Nominal corrosion raté? . (r)  lognormal 1uA/cm? 25% -
Concrete covee(s) lognormal 50 mm 20%  pe(z1,22)

T Autocorrelation coefficient function of the underlying Gaian field
pD(xl’xQ) — 6_7‘—($1_$2)2/62D , HD = 2 m ;pe(ajl’xz) — 6_77(1'1_1'2)2/92 , 96 = 2 m

e Eq.(11), where the point-in-space probability of failuseobtained by Monte Carlo simulation
(100,000 samples were used);

e The field discretization approach described in Section ABFigure 3. The EOLE discretiza-
tion of both input fields was carried out using a regular godsisting inN = 81 points over
[0,10 m]. A numberr = 16 points was retained in the spectral decomposition (Eq).(2Vhis
allows to get a maximal relative discretization error onfie&l variance of 0.1 % (as shown in
Figure 2(b) above). A total number of 10,000 spatial reélirs of the limit state function was

used.
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Figure 5: Evolution in time of the mean extent of damage
The mean damage length obtained by the three approachesttisdpin Figure 5 (the values are
also gathered in Table 2, columns #2-4). An excellent agee¢fpetween the various approaches is

observed. The maximal discrepancy between FORM and thediigidetization approach is less than
5%, and less than 2% far> 40 years. Part of this discrepancy is due to the linearizatioRORM:
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indeed, if MCS is used for evaluating the point-in-spacebphility of failure instead of FORM, the
latter discrepancy reduces to 3%, and less than 0.5%X*o40 years.

Time Mean value Standard deviation
(years) Eqg.(11) Eq.(11) Random field Eqg.(16) Eq.(16) Rantielu
MCS FORM MCS MCS FORM MCS
20 0.038 0.039 0.037 0.239 0.245 0.224
22 0.062 0.061 0.058 0.310 0.321 0.294
24 0.088 0.091 0.089 0.376 0.406 0.382
26 0.125 0.128 0.129 0.479 0.498 0.482
28 0.171 0.174 0.175 0.567 0.597 0.582
30 0.228 0.228 0.230 0.677 0.701 0.686
32 0.296 0.291 0.295 0.781 0.810 0.799
34 0.365 0.363 0.370 0.902 0.921 0.914
36 0.450 0.442 0.454 1.016 1.035 1.034
38 0.537 0.530 0.543 1.134 1.149 1.151
40 0.638 0.626 0.640 1.245 1.264 1.265
42 0.740 0.728 0.743 1.350 1.377 1.379
44 0.849 0.837 0.852 1.456 1.489 1.492
46 0.961 0.952 0.967 1.578 1.598 1.599
48 1.084 1.073 1.088 1.685 1.705 1.705
50 1.211 1.199 1.214 1.781 1.809 1.808
52 1.341 1.329 1.344 1.883 1.909 1.906
54 1.478 1.462 1.478 1.972 2.005 2.003
56 1.616 1.600 1.614 2.066 2.097 2.093
58 1.755 1.739 1.753 2.155 2.184 2.181
60 1.896 1.882 1.898 2.251 2.267 2.264

Table 2: Mean and standard deviation of the extent of damagmparaison of approaches

The standard deviation of the extent of damage is computedrbg approaches as well:
e EQ.(16) where the system reliability problem under thegrakis solved by FORM,;
e Eq.(16) where this problem is solved by MCS (100,000 sampkre used);
o the field discretization approach.

The standard deviation of the extent of damage obtainedebthtiee approaches is plotted in Figure 6
(the values are also gathered in Table 2, columns #5-7). &tgi@, the agreement between the various
approaches is excellent. The maximal discrepancy betweeartalytical and the field discretization
approaches is less than 9%, and about 0.2% for40 years. The accuracy of the analytical formula
(Eq.(16)) increases with larger time horizons. The use ohtddCarlo simulation for evaluating the
system probability of failure (instead of FORM) does nophaluch. Indeed, part of the residual error
is due to the approximation in the quadrature of the inte@@y.

The various algorithms to compute the mean and standaratdmviof the extent of damage are
implemented in MathCad. In terms of efficiency, the field ditication approach requires about
5 hours on a standard PC (Pentium M processor at 1.6 GHz, 51RKMH) to get the curves in
Figures 5-6, whereas the analytical approach (FORM and Mé&fiires less than 2 minutes.
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Figure 6: Evolution in time of the standard deviation of tkéeat of damage

5.4 Histogram of the extent of damage

From the Monte Carlo simulations, it is possible to plot dggams of the extent of damage, see
Figure 7. Itis first observed that there is always a non zerolar of spatial realizations of the limit
state function that are strictly positive, meaning thatdksociated realization of the damage length
e([0, L], t) is exactly equal to zero. In other words, there is a probghsipike on zero, as shown in
Figure 7. This spike is all the greater since the time indtasitnaller (the spikes in the figure are not on
scale). Similarily, when time increasesd.t = 60 years), another spike appears 00, L|,t) = L.
This represents cases where the beam is fully damaged.

It clearly appears in Figure 7 that the damage length has plesr?DF. Thus its approximation by a
Gaussian PDF (as.g.in [6]), due to the application of the central limit theoremthe summation of
independent damaged areas, is probably very rough. Thigisodthe fact that:

e it is impossible to discretize the structure imally independensubdomains, as soon some
input parameters are modelled by random variablesqpatially perfectly correlated);

¢ the extent of damage is by definition bounded by 0 @nd

5.5 Probability of no corrosion
The probability of having the beam completely sound at argiwae instant P (£([0, L], t) = 0))

is an interesting information to assess the state of damagme. In the case of uni-dimensional
problems(d = 1) as the current example, a closed-form expression for tsitity can be derived.
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Figure 7: Histogram of the extent of damage (m) at varioug timstants (10,000 samples)

Indeed:
P(&E(]0,L],t) =0) =1-P(E([0,L],t) >0)=1—-P(Fz€[0,L], g(Z(x), t) <0)

—1-p( | a(z@).n<0 (49)
z€[0,L]

where the righthand side is nothing but the space-variaiatility of failure defined in Eq.(7).

This space-variant problem can be considered sizasial first passage problem, and thus solved by
techniques developed in time-variant reliability anady{dil]. Thespatial outcrossing ratérom the
undamaged state to the damage state is defined at each ttamd ing

vi(z,t) = hliLnOP (9(Z(x),t) >0Ng(Z(x + h),t) <0)/h (49)

In case of homogeneous problems, this quantity is indepgrafer. If the occurrence of spatial
outcrossing is considered as a Poisson process [14, Chape&pace-variant probability of failure
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may be estimated in the homogeneous case by:
P(£([0,L],t) > 0) ~ 1 — e ¥ (@o:t) (50)

where the outcrossing rate is computed at any pointe [0, L] due to homogeneity. Hence the
probability of no corrosion:
P (£(0,L],t) = 0) ~ e~ (#0:) (51)

The outcrossing rate may be evaluated by the PHI2 metho@gl%vhich is based on the solution of
the parallel system reliability problem in Eq.(49), seerdferences for details.

Table 3 gathers the probability of no corrosion at varioosetinstants, computed either by the field
discretization approach (fraction of the number of spatializations of the limit state function for
which no corrosion is observed) or by Eq.(51).

Time (years) MCS Eq.(51)

20 0.960 0.956
22 0.939 0.935
24 0.913 0.910
26 0.886 0.880
28 0.857 0.847
30 0.823 0.812
32 0.787 0.774
34 0.750 0.736
36 0.715 0.698
38 0.681 0.660
40 0.642 0.623
42 0.607 0.587
44 0.572 0.553
46 0.535 0.522
48 0.502 0.492
50 0.470 0.464
52 0.437 0.438
54 0.409 0.414
56 0.382 0.393
58 0.355 0.373
60 0.330 0.355

Table 3: Probability of no corrosion in the beath(€([0, L], t) = 0))

It appears that the analytical approximate formula pravigle accurate estimation of the probability
of having no corrosion, the discrepancy compared to the M&S8lis being less than 6%. However,
it is expected that the accuracy will decrease when timesagas, due to the fact that the Poissonian
assumption on the outcrossing becomes incorrect when massgibly correlated) outcrossings occur.

5.6 Influence of the autocorrelation coefficient function

As mentioned above, the autocorrelation coefficient famcfor the input random fields is not well
known due to lack of data. In this section, the influence ofsthepe of the autocorrelation coefficient
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functionpp(x1, x2) is studied, as well as that of the scale of fluctuation. Therifgson of the random
field modelling the concrete cover is the same as in Table 1.shsvn in Section 3.2, changing
pp(x1,z2) Will notchange the expected extent of damage, but rather influeeceatiance of the
latter.

As the analytical approach described above allows to comihe standard deviation of the extent
of damage in a matter of seconds, it is possible to use it fowicg out a parametric study. As
an illustration, the standard deviation of the extent of dgenatt = 60 years is considered here.
The evolution of this quantity as a function of the scale oftilation of the coefficient of diffusion
Dc¢o, is plotted in Figure 8 for two shapes of autocorrelation fioeht functions (Type A, B), see
Egs.(29)-(30)).

w

-0 Type A
H —O— Type B

N
©

nooN
» [«2]
T T

n
N
T

L
B [<2) [ee]
T T T

Standard deviation of the extent of damage
P
[N N

[y

o
N
(o]

4 6 10
Scale of fluctuation (m)

Figure 8: Influence of the shape of the autocorrelation aoefft function and the scale of fluctuation
of DCOQ

From this figure, it appears that the standard deviationtleransensitive to the parameters. Indeed,
the value varies between -6% to +11% with respect to ther@igicenario presented in Section 5.3
(Type B,6p = 2 m). This is an interesting result since the shape and scedengders of the autocor-
relation coefficient functions are difficult to infer in ptace due to lack of data.
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6 Conclusions

The characterization of the extent of damage in probaigildgradation models of structures is of
major interest, especially for optimizing maintenancegies$. This requires describing the parameters
of the degradation models as random fields.

The paper presents analytical derivations for the meantandard deviation of the extent of damage.
The former appears independent from the correlation streictf the input fields. Both quantities may
be computed by analytical formubagthoutany discretization of the random fields.

In order to assess the accuracy of the formulae , an efficientéMdarlo-based framework for comput-

ing spatial realizations of the extent of damage is propdsased on the EOLE discretization method.
On top of mean and standard deviation, the direct Monte Ganhailation of the extent of damage

also yields histograms of the latter.

All the methods are illustrated on the example of a RC bearmitdal to carbonation-induced re-
bars corrosion. The mean and standard deviation of the teatedamage obtained by the various
approaches compare very well with each other. The computdtcost of the analytical approach is
about two orders of magnitude smaller than that of the divianite Carlo simulation.

From the histograms of the extent of damage, it appears todapility spikes corresponding to
“fully sound” or “fully damaged” structures exist. The apgimation of the extent of damage by a
Gaussian random variable is thus proven to be irrelevartiindontext. These histograms may be
used in the context of reliability analysis.g.to compute the probability that the extent of damage is
greater than a given value, say 5% of the original lengthidiase) of the structure. The existence of
probability spikes shall warn the analyst that classicidity methods such as FORM/SORM may
be inappropriate for solving this problem.

Of particular interest in reliability analysis is the prebi of computing the probability of having

no damage along the structur&(D,¢) = 0). A technique for computing directly this quantity is
finally proposed in the case of one-dimensional problems égplication example). This technique,
inspired by time-variant reliability methods, doest require the discretization of the input random
fields either.

Although illustrated on a simple degradation model, theopsed approach is quite general and could
be applied efficiently to chloride contaminated structugesh as bridge decks.
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A Proof of Egs.(16),(17)

One-dimensional case D = [0, L] )
Supposef (x1,x2) = f(x1 —x2), Wwheref(z) is an even function of its argument. Assume the integral
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fO fO (x1,x9) dx1 dxo exists and is to be computed. The following mapping is used:

- £U1+£'32_1

X9 — T (52)

L

a(v)/2 _
/ / f(Lv)dudv (53)
a(v)/2
Since the integrand does not depend anymore,ahe integration with respect to providesa(v).

Moreover, due to the fact that is even, the integral with respect tois twice that computed over
[0, 1]. Finally, forv > 0, it is easy to show that(v) = 2 — 2v. Thus:

The integral rewrites:

I =12 /1 F(L)(2 —2v)dv (54)
0

Two-dimensional case D = {(z,y) € [0, L1] x [0, Lo]}
Supposef (z1,y1, x2,y2) = f(x1 — z2,y1 — y2), Wheref(x, y) is an even function of its arguments.
The integral to be computed is of the form:

Ly
Iy = / / / f T — T, Y] — yg) dxy dxo dyy dys (55)
z1=0 Jx2 y1=0 Jy2=0

The mapping in Eq.(52) can be applied on each coordifate). Thus:

1 1
I, =L1313 / / f(Livi, Ly ve)(2 — 201)(2 — 2v2) dvy dusy (56)
0o Jo
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