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Abstract
Describing accurately damage in degrading reinforced concrete structures is of major interest in the
context of durability analysis and maintenance. Due to numerous sources of uncertainty in the degra-
dation models, a probabilistic approach is suitable. The probabilistic description of theextentof
damage requires introducing random fields for modelling thespatial variability of the various param-
eters. In this paper, a general formulation for the spatial extent of damage is set up. This formulation
allows to derive closed-form expressions for the mean valueand standard deviation of the latter. Ac-
cordingly, practical computations can be carried outwithoutdiscretizing the input fields. In order to
check the accuracy of the proposed implementation, Monte Carlo simulation (MCS) of the extent of
damage is also carried out, using an efficient random field discretization technique known as EOLE.
Both approaches are compared to study the extent of rebars corrosion in a RC beam subjected to con-
crete carbonation. Furthermore, the Monte Carlo approach allows to compute the full probabilistic
content on the extent of damage,e.g. histograms. It was shown that these histograms have a non
trivial shape, in the sense that probability spikes exist for the bound values (case of undamaged and
fully damaged structures). The influence of the auto-correlation function of the various input random
fields and that of their scale of fluctuation is finally studied.

Keywords : extent of damage / space-variant reliability / time-variant reliability / degradation models
/ concrete carbonation / rebars corrosion / random fields / EOLE method /

1 Introduction

Probabilistic models of concrete degradation have been intensively studied in the past ten years. The
most important degradation mechanism considered in the literature is the corrosion of the rebars due
to chloride ingress in the concrete mass or concrete carbonation. This mechanism is of utmost impor-
tance in the ageing of bridge structures that are submitted to deicing salts, or any structure in a marine
environment [1, 2, 3, 4]. Authors have focused on the prediction of the initiation time for corrosion
and / or the estimation of the residual strength of structures.

Recent advances in this field have pointed out the necessity of modelling the spatial variability of
the model parameters in order to be able to characterize, notonly the probability of degradation, but
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also the extent of damage [5, 6, 7]. This extent of damage is the natural variable that characterizes
the global state of damage of the structure, and that may be used in optimizing maintenance policies
[5, 8, 9, 10].

In this paper, a general formulation for spatially variabledegradation models is proposed. The so-
calledpoint-in-spaceandspace-variantreliability problems are recalled in Section 2 [11]. Then the
extent of damage is given a proper definition, from which analytical derivations are carried out in order
to compute the first two statistical moments (Section 3). Efficient implementations of these formulæ
(based on the First Order Reliability Method (FORM) and Monte Carlo simulation) are proposed in
Section 4.

In order to evaluate the accuracy of the analytical approach, an alternative framework for the direct
estimation of the extent of damage by Monte Carlo simulationis proposed. This requires the use
of random field discretization techniques and the post-processing of the simulation results. Both ap-
proaches (called “analytical” and “field discretization” in the sequel) are compared on an application
example, which considers carbonation-induced corrosion.Finally, the results of Monte Carlo simula-
tion allow to plot histograms of the extent of damage, whose specific shape is studied.

2 Spatially varying probabilistic degradation models

2.1 A class of degradation models

The degradation of structures in time may be defined in a broadsense as the loss of certain properties as
the result of chemical, physical or mechanical processes, or combinations thereof. Concrete structures
are submitted to many degradation mechanisms, including rebars corrosion due to chloride ingress or
concrete carbonation.

The deterministic models for these degradation mechanismsare usually based on semi-empirical equa-
tions that yield a so-calleddamage measureD (considered here as a scalar quantity) as a function of
parametersz and time:

D(t) =M(z, t) (1)

Examples of damages measures are:

• crack width, which may be modelled as a function of the corrosion rate of the rebars, the con-
crete cover, the rebars diameter, etc. [5],

• loss of rebars diameter, which depends on the corrosion rateand the time for initiation of corro-
sion, the latter being modelled specifically in case of chloride or carbonation-induced corrosion
[12]

• fatigue damage due to repeated application of stress cyclesonto the structure [13].

In order to assess the durability of the structure with respect to a given category of damage, a limit
value D̄ is usually prescribed (e.g. maximal acceptable crack width, etc.). Note that the damage
measure in Eq.(1) is anincreasingfunction of time. Indeed, the degradation phenomena considered
in this paper are supposed to be irreversible.
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2.2 Local reliability problem

The model parameters in Eq.(1) are in practice uncertain andshould be modelled by random variables
with prescribed joint probability density function. In this case, the damage measure becomes random.
Assessing the state of the structure becomes a reliability problem.

Let us denote byZ = {Z1, Z2, ..., ZM} the set of random variables describing the randomness in the
degradation model. The failure criterion under consideration is mathematically represented by alimit
state functiong(Z , t) defined in the space of parameters at time instantt ∈ [0, T ] in a way such that:

• g(Z , t) > 0 defines thesafe state;

• g(Z , t) ≤ 0 defines thefailure state;

• g(Z , t) = 0 defines thelimit state surface.

Denoting byfZ(z) the joint probability density function of random vectorZ, the time-dependent
probability of failure of the structure reads:

Pf (t) =

∫

g(z,t)≤0
fZ(z) dz (2)

or equivalently:

Pf (t) =

∫

RM

1{g(z,t)≤0}(z) fZ(z) dz = E
[

1{g(z,t)≤0}(z)
]

(3)

where1{g(z,t)≤0}(z) is the indicator function of the failure domain in the space of parameters.

In the context of degradation models, the limit state function shall be referred to as the damage crite-
rion in the sequel. As an example, if it is defined by a fixed thresholdD̄ on the damage measure, the
limit state function may be of the form:

g(Z , t) = D̄ −D(t) = D̄ −M(Z, t) (4)

We further suppose that the input parametersZ are not time-dependent,i.e. that they modelled by
random variables and not by random processes. As a consequence, the reliability problem (2), which
appears time-dependent, is actually equivalent to a seriesof time-invariant problems, wheret is a
dummy parameter. Indeed, due to the above assumption and thefact that the damage measure is
increasing in time, any trajectoryg(z0, t) computed from a realizationz0 of the input random vector
is monotonically decreasing with time. The time-dependentaspect of the problem over a time interval
[0, τ ] is taken care of by solving thetime-invariant problem at the final instantτ . Note that the
latter assertion may not hold anymore if some input parameters (e.g.environmental conditions) were
modelled by random processes.

In all but academic cases, the integral in Eq.(2) cannot be computed analytically. Thus numerical
methods have to be employed. Monte Carlo simulation (MCS) isa versatile tool that takes advantage
of the formulation in Eq.(3), where the probability of failure is viewed as the expectation of a function
of the parameters. A sample set of input parameters{z1, . . . , zNSim

} is generated according tofZ(z)
and the empirical mean of1{g(z,t)≤0}(zj) is computed. This approach allows to derive confidence
intervals for the probability of failure.

The main drawback of Monte Carlo simulation is that the number of samplesNSim required for a fair
prediction becomes untractable when the probability of failure is small. Thus approximate methods
such as FORM/SORM have been developed, seee.g. [14] for a detailed presentation.
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2.3 Space-variant reliability problems

The above probabilistic degradation model is referred to aszero-dimensional, in the sense that it does
not involve any spatial coordinate system attached to the structure. It thus implicitely assumes a
complete homogeneity of the degradation all over the structure. In other words, for a given realization
z0 of the input random vector, thefull structure will be either in the safe state (undamaged) or in the
failure state (fully damaged). This is of course a coarse simplification of the real world. Moreover,
this does not allow to characterize the extent of damage. To address this issue, additional notation
shall be introduced.

Suppose that the structure under consideration occupies a volumeD ⊂ R
d, whered = 1, 2 or 3.

The cased = 1 corresponds to modelling beam or arch structures, the cased = 2 to plate or shell
structures. In order to address the problem of spatial variability, the input random vector in Eq.(2)
should be replaced byM multivariate scalar random fields gathered in a vectorZ(x), wherex ∈ D
is the spatial coordinate. The probabilistic description of these fields is yet to be specified. Note that
in practice the following assumptions usually apply:

• the spatial variability of certain components ofZ is negligible. They are accordingly modelled
as random variables. As a consequence, only a small number ofscalar random fields have to
be specified in practice. However, for the sake of simplicity, the most general notationZ(x) is
kept in this section.

• the random field components arehomogeneousfields. This is due to the fact that the size of
the structure is usually small compared to the scale of fluctuation of the parameters driving
the degradation (e.g. environmental parameters such as surface chloride or carbon dioxyde
concentration, etc.).

In the space-variant context, the limit state function in Eq.(4) should be replaced by:

g(Z(x), t) = D̄ −M(Z(x), t) (5)

Thepoint-in-spaceprobability of failure is defined in eachx ∈ R
d as follows:

Pf (x, t) =

∫

g(Z(x), t)≤0
fZ(x)(z) dz = E

[

1{g(Z(x), t)≤0}(z)
]

(6)

It is computed by freezingx (i.e. replacing the random fieldZ(x) by the corresponding random
vector) andt, and by applying standard time-invariant reliability methods (MCS, FORM/SORM, etc.).
Note that if the random fieldZ(x) is homogeneous, then the same reliability problem is posed at
whatever the position of the pointx under consideration. Thus the point-in-space probabilityof
failure is independentof x in this case.

Thespace-variantprobability of failure is defined, for any subdomainH ⊂ D by [11]:

Pf (H, t) = P (∃x ∈ H , g(Z(x), t) ≤ 0) = P

(

⋃

x∈H

g(Z(x), t) ≤ 0

)

(7)

This quantity is the “spatial” counterpart of the so-calledcumulativeprobability of failure in time-
variant reliability problems [15].
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When the damage measure is related to serviceability of the structure (e.g. apparition of cracks or
rebars loss of diameter) and not directly related to the collapse of the structure, none of the above
quantities are sufficient to characterize the global state of ageing of the structure. Indeed, Eq.(6) is by
definition a local quantity (at pointx). Eq.(7) refers to the probability that there isat leastone point
in subdomainH where the local damage criterion is attained. This probability is likely to be close to
one, without meaning that the structure is close to structural failure.

In contrast, theextent of damageis of major interest, especially for the comparison of maintenance
policies, seee.g. [5, 8]

3 Extent of damage

3.1 Definition

The extent of damage is defined at each time instantt as the measure of the subdomain ofD in which
the local failure criterion is attained:

E(D, t) =

∫

D
1{g(Z(x), t)≤0}(x) dx (8)

Note thatE(D, t) is a scalar random variable since the integral overx is defined for each realization
of the input random field, sayz(x). It is positive-valued and is by definition bounded by the volume
of the structure inRd denoted by|D|. Again, due to the monotony of degradation phenomena, each
realization ofE(D, t), saye(D, t) is a continuously increasing function of time.

3.2 Mean and variance

By taking the expectation of Eq.(8) (i.e. with respect toZ), one gets the following expression for the
mean value of the extent of damage:

E(D, t) ≡ E [E(D, t)] =

∫

D
E
[

1{g(Z(x), t)≤0}(x)
]

dx (9)

By comparing the integrand of the above equation with Eq.(6), one gets:

E(D, t) =

∫

D
Pf (x, t) dx (10)

In case of homogeneous input random field, this integrand is independent ofx, as explained above.
Thus:

E(D, t) = Pf (x0, t) · |D| (Homogeneous case) (11)

where the point-in-space probability of failure is computed at any pointx0 ∈ D.

The above equation has the following interpretation: the proportion of the structure where the damage
criterion is attained (i.e. E(D, t)/|D|) is, in the mean, equal to the point-in-space probability offailure.
This remark has two important consequences:

• it is not necessary to introduce the complex formalism of random fields when one is interested
only in the mean value ofE(D, t). Only the description of the input randomvariablesgathered
in vectorZ is required.
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• the mean proportion of the structure that is damaged is independent of the correlation structure
of the input random fieldZ(x), if the spatial variability is modelled. This is a valuable result,
since the determination of the correlation structure is difficult and hardly done in practice, due
to the lack of data (the auto-correlation functions and their parameters being often chosen from
“expert judgment”, seee.g. [5, 8]).

In order to better capture the probabilistic content ofE(D, t), it is useful to study the variance of the
extent of damage. By definition, this quantity reads:

Var [E(D, t)] = E
[

E2(D, t)
]

− E(D, t)
2

(12)

From the definition in Eq.(8) one can write:

E2(D, t) =

(∫

D
1{g(Z(x), t)≤0}(x) dx

)

·
(∫

D
1{g(Z(x), t)≤0}(x) dx

)

=

∫

D

∫

D
1{g(Z(x1), t)≤0}(x1) · 1{g(Z(x2), t)≤0}(x2) dx1dx2

(13)

The integrand is equal to one if and only if the limit state function takes negative values at both
locationsx1 andx2. Thus (13) may be rewritten as:

E2(D, t) =

∫

D

∫

D
1{g(Z(x1), t)≤0 ∩ g(Z(x2), t)≤0}(x1 , x2) dx1dx2 (14)

Hence:

E
[

E2(D, t)
]

=

∫

D

∫

D
P (g(Z(x1), t) ≤ 0 ∩ g(Z(x2), t) ≤ 0) dx1 dx2 (15)

This equation is similar to the results obtained by Koo and Der Kiureghian [16] for the excursion time
in the context of first-passage problem in time-variant reliability analysis.

Here again, the assumption of homogeneity allows to simplify the result. Indeed, the integrand in
Eq.(15) depends only on|x1 − x2| in this case, meaning that it is an even function of(xj

1 − xj
2), j =

1, . . . , d. One can prove that the above double integral may be reduced to a single integral (see details
in Appendix A) and further simplified. For the sake of clarity, results are reported here separately for
d = 1 andd = 2.

• For a beam of lengthL (d = 1, |D| = L), the variance of the extent of damage is:

Var [E(D, t)] = L2

∫ 1

0
P (g(Z(0), t) ≤ 0 ∩ g(Z(Lu), t) ≤ 0) (2− 2u) du − E(D, t)

2
(16)

• For a rectangular plate of dimensions(L1, L2), the variance of the extent of damage is:

Var [E(D, t)] = L2
1 L2

2

∫ 1

0

∫ 1

0
P (g(Z(0, 0), t) ≤ 0 ∩ g(Z(L1u,L2v), t) ≤ 0) . . .

. . . (2− 2u)(2 − 2 v) du dv

− E(D, t)
2

(17)

The integrals in Eqs.(16),(17) are rather easy to evaluate since both the integration domain and the
integrands are bounded. A typical Gaussian quadrature rule[17] can be applied, as shown in the next
section.
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3.3 Conclusion

In this section, the mean and standard deviation of the extent of damage have been derived in a closed
form. The obtained formulæ donot require that the random fields describing the spatial variability of
the problem are discretized. It has been shown that the mean value of the extent of damage does not
depend on the correlation structure of the input random fields. In case of homogeneous input, it may
be computed from a single point-in-space analysis (Eq.(11)).

In case of 1D or 2D-rectangular structures, the computationof the variance further reduces to a single
integral overD instead of a double integral. These cases are of great practical importance, since
the majority of civil engineering structures may be decomposed into beams and plates. Eq.(17) is
also applicable to shell structures (e.g. cooling towers) as soon as the geometry of these structures is
parametrized by a rectangular domain,e.g.{(θ, z), θ ∈ [0, 2π], z ∈ [0, zmax]}.

4 Numerical implementation

As explained above, the mean and standard deviation of the extent of damage may be computed from
Eqs.(11),(16),(17) without discretizing the input randomfields. The practical implementation of these
equations is described in the next subsection.

In order to assess the accuracy of the proposed approach, theresults have to be compared with the
Monte Carlo simulation of the extent of damage. For this purpose, the input random fields shall be
discretized and simulated. This is described in the second next subsection.

4.1 Analytical approach

We consider here the computation of mean and standard deviation of the extent of damage (also called
damage lengthin the one-dimensional case) by the analytical equations Eqs.(11),(16). The extension
to (17) is straightforward.

As shown in the previous section, Eq.(11) reduces to solvinga time-invariant point-in-space reliability
problem. The first order reliability method (FORM) may be used for this purpose.

In order to evaluate Eq.(16), note that the probability under the integral is nothing but the parallel
system failure probability associated to the events{g(Z(0), t) ≤ 0} and{g(Z(Lu), t) ≤ 0}. This
probability may be computed using the FORM method applied toparallel systems:

P (g(Z(0), t) ≤ 0 ∩ g(Z(Lu), t)) ≈ Φ2(−β(0, t),−β(Lv, t), ρg(Lu, t)) (18)

In this equation, the following notation is used:

• Φ2(x, y, ρ) is the binormal CDF;

• β(0, t) (resp.β(Lu, t) ) is the point-in-space reliability index at abscissax = 0 (resp. abscissa
x = Lu). Note that both values are equal when homogeneous fields areconsidered.

• ρg(Lu, t) = α(0, t) ·α(Lu, t) is the dot product of theα-vectors obtained by FORM. Remem-
ber that theα-vector is the unit vector in the direction of the design point in the standard normal
space.
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Eq.(18) is practically evaluated as follows:

• a point-in-space FORM analysis is carried out atx = 0, replacing the random fields by a set of
random variables having the same PDF, sayZ(1).

• another point-in-space FORM analysis is carried out atx = Lu, replacing the random fields by
another set of random variables having the same PDF, sayZ(2). If some componentsZj are
actuallyrandom variables(in other words, fully correlated fields), thesamevariables are used
in both analysis (Z(1)

j = Z
(2)
j ). Otherwise, the components ofZ(2) corresponding to “true”

random fields are correlated to the corresponding components of Z(1) using the random field
autocorrelation matrix.

• the reliability indices andα-vectors obtained by both analysis are reported in Eq.(18).

As a conclusion, the evaluation of Eq.(18) requires two FORManalysis. Finally, the integral in Eq.(16)
may be evaluated using a Gaussian quadrature formula. The principle of Gaussian integration is to
approximate the integral by a weighted summation:

∫ 1

0
h(u) du =

∫ 1

−1
h

(

1 + s

2

)

ds

2
≈

K
∑

i=1

ωi

2
h

(

1 + si

2

)

(19)

where{(ωi , si), i = 1, . . . , K} are the integration weights and points [17]. Again, the extension of
the latter equation to two-dimensional problems (d = 2, see Eq.(17)) is straightforward.

4.2 EOLE method for random field discretization

In order to compute the mean and standard deviation of the extent of damage by Monte Carlo simula-
tion, the simulation of spatial realizations of the damage criterion is required. This can be done after
a proper discretization of the input random fields. Theexpansion optimal linear estimationmethod
(EOLE) [18] is used for this purpose in case of Gaussian random fields (it is assumed that the com-
ponents of the vector input random field are independent). Itmay then be also applied to discretize
fields obtained by translation,e.g. lognormal fields. The method is based on the pointwise regression
of the original random field with respect to selected values of the field, and a compaction of the data
by spectral analysis. The method is now recalled.

Let us consider a scalar Gaussian random fieldH(x) defined by its meanµ(x), its standard devi-
ation σ(x) and its autocorrelation coefficient functionρ(x1,x2). Let us consider a grid of points
{x1, ...xN} in D and denote byχ the random vector{H(x1), ...H(xN )}. By construction,χ is a
Gaussian vector whose mean valueµχ and covariance matrixΣχ χ read:

µi
χ = µ(xi) (20)

(Σχ χ)i,j = Cov [H(xi) , H(xj)] = σ(xi)σ(xj) ρ(xi , xj) (21)

Theoptimal linear estimation(OLE) of random variableH(x) onto the random vectorχ reads:

H(x) ≈ Ĥ(x) = µ(x) + Σ
′
Hχ(x) · Σ−1

χ χ ·
(

χ− µχ

)

(22)

where(.)′ denotes the transposed matrix andΣHχ(x) is a vector whose component are given by:

Σ
j
Hχ(x) = Cov [H(x) , χj] = Cov [H(x) , H(xj)] = σ(x)σ(xj) ρ(x , xj) (23)
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Let us now consider the spectral decomposition of the covariance matrixΣχχ:

Σχχ φi = λi φi i = 1, . . . , N (24)

This allows to linearly transform the original vectorχ:

χ = µχ +

N
∑

i=1

√

λi ξi φi (25)

where{ξi , i = 1, ... N} areindependentstandard normal variables. Substituting for (25) in (22) and
using (24) yields the OLE representation of the field :

Ĥ(x) = µ(x) +

N
∑

i=1

ξi√
λi

φi
′ ·ΣH(x)χ(x) (OLE expansion) (26)

The series can be further truncated afterr ≤ N terms, the eigenvaluesλi being sorted first in descend-
ing order. This yields the EOLE expansion:

Ĥ(x) = µ(x) +

r
∑

i=1

ξi√
λi

φi
′ ·ΣH(x)χ(x) (EOLE expansion) (27)

The variance of the error for the EOLE discretization reads:

Var
[

H(x)− Ĥ(x)
]

= σ2(x)−
r
∑

i=1

1

λi

(

φ′
i ·ΣH(x) χ(x)

)2
(28)

The above equation allows to check that the grid density (i.e. number of pointsN ) and the number of
termsr are large enough to attain a prescribed accuracy in the discretization. Details on how choosing
these parameters are given in [19].

Example Let us consider a homogeneous univariate (d = 1) standard normal random field (with zero
mean and unit standard deviation) having one of the following autocorrelation coefficient function:

• Type A:

ρA(x1, x2) = exp

(

−
∣

∣

∣

∣

x1 − x2

ℓA

∣

∣

∣

∣

)

(29)

• Type B:

ρB(x1, x2) = exp

(

−
(

x1 − x2

ℓB

)2
)

(30)

• Type C:

ρC(x1, x2) =
sin((x1 − x2)/ℓC)

(x1 − x2)/ℓC
(31)

In order to study the influence of the shape of the autocorrelation function, it is desirable to find an
equivalence between the various parameters. The usual measure is thescale of fluctuationproposed
by Vanmarcke [20]:

θ = 2

∫ ∞

0
ρ(0, x) dx (32)
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Figure 1: Autocorrelation coefficient functions (scale of fluctuationθ = 2)

For the three types of autocorrelation coefficient functions given above, the results are:

θA = 2 ℓA

θB =
√

π ℓB (33)

θC = π ℓC

The three autocorrelation coefficient functions are plotted in Figure 1 forθ = 2. The random field is
now discretized over the intervalx ∈ [0, 10] usingN = 81 points (regular grid with stepsize equal to
10/80 = 0.125). A numberr = 16 terms is retained in the EOLE expansion. Figure 2 presents the
evolution of the variance error (Eq.(28)) as a function ofx ∈ [0, 10] for the three functions. Obviously
the discretization scheme is not accurate enough for Type A correlation (maximal error of 16.7%),
accurate enough for Type B (maximal error of 0.1%) and almostexact for Type C (maximal error of
10−13%).

4.3 Monte Carlo simulation of the extent of damage

Once an input random field, sayZj(x) has been discretized using EOLE, a realization of the field
Ẑo

j (x) (i.e. a usual function ofx ∈ D) is obtained by simulating a set ofr standard normal random
variables, say{ξo

1 , ... ξo
r}, and substituting for them in Eq.(27):

Ẑo
j (x) = µ(x) +

r
∑

i=1

ξo
i√
λi

φi
′ ·ΣZj(x)χ(x) (34)

The above spatial realizations can then be used to get spatial realizations of the limit state function
g(Zo(x), t) at time instantt. Each realization shall be post-processed in order to compute the realiza-
tion of the extent of damageEo(D, t).
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Figure 2: Variance of the error of discretization for various autocorrelation coefficient functions
(x ∈ [0, 10], θ = 2, N = 81, r = 16)

In the recent literature on space-variant probabilistic damage models, seee.g. [5, 6, 8], the so-called
midpoint approach(MP), originally proposed in [21], has been used to discretize the random fields
and post-process the extent of damage. It is important to recall that this crude approach is by far less
accurate than the EOLE decomposition, even when using a large numberNMP of elements in the
midpoint approach (the comparaison of accuracy can be foundin [18, 19]).

Moreover, the midpoint approach also provides a rough estimation of the extent of damage for each
trajectory. Indeed, ifNMP elements have been used for the discretization, the extent of damage for
a given realization of the input fields is estimated byND

NMP
|D|, whereND is the number of elements

where the damage criteriong(Zo(x), t) is attained. AsNMP is limited in practice, since it is also
equal to the number of random variables required for discretizing each field, the above estimate may
be crude.

In contrast, the EOLE method, which provides smooth realizations of the field may be post-processed
efficiently. In the following, the one-dimensional (d = 1, D = [0, L]) case is presented, the extension
to larger dimensions being straightforward, although quite technical. Each realization of the damage
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criterion is stored in an array of sizeQ + 1 corresponding to the evaluation ofg(Zo(x), t) at selected
points:

{gj = g(Zo(jL/Q), t), j = 0, ... Q} (35)

The damage length is then obtained by screening this array according to the algorithm summarized in
Figure 3. If, for a givenj ∈ [0, Q− 1], gj ≤ 0 andgj+1 ≤ 0 it is supposed that the failure criterion is
negative for anyx ∈ [jL/Q , (j + 1)L/Q] and the damage length is increased byL/Q. If g changes
its sign betweenjL/Q and(j + 1)L/Q, a linear interpolation allows to compute the portion of the
latter interval whereg is negative. Of course,Q has to be selected in such a way that the trajectories
do not change sign twice within an interval of the form[jL/Q , (j + 1)L/Q], i.e. consistently with
the scales of fluctuation of the input fields.

Initialization:

Eo(D, t) = 0 ; ∆L = L/Q

For j = 0, Q− 1

if (gj < 0 andgj+1 < 0) then Eo(D, t)← Eo(D, t) + ∆L

if (gj < 0 andgj+1 > 0) then Eo(D, t)← Eo(D, t) +
gj ∆L

gj − gj+1

if (gj > 0 andgj+1 < 0) then Eo(D, t)← Eo(D, t) +
gj+1 ∆L

gj+1 − gj

Figure 3: Algorithm for computing the extent of damage by Monte Carlo simulation

5 Application example: corrosion induced by concrete carbonation

5.1 Point-in-space model of carbonation

Concrete carbonation is a complex physico-chemical process that includes the diffusion ofCO2 into
the gas phase of the concrete pores and its reaction with the calcium hydroxylCa(OH)2. The latter
can be simplified into:

Ca(OH)2 + CO2 −→ CaCO3 + H2O (36)

As the high pH of uncarbonated concrete is mainly due to the presence ofCa(OH)2, it is clear that
the consumption of this species will lead to a pH drop, which can attain a value of 9 when the reaction
is completed. In this environment, the oxide layer that protected the reinforcement bars is attacked
and corrosion starts. The corrosion products tend to expandinto the pores of concrete, developping
tensile stresses which eventually lead to cracking [22, 23,24].

In practice,CO2 penetrates into the concrete mass by diffusion from the surface layer. Thus a car-
bonation front appears that moves into the structure. A model for computing the carbonation depth
xc is proposed by the CEB Task Groups 5.1 & 5.2 [25]. The simplified version retained in the present
paper reads:

xc(t) =

√

2C0 DCO2

a
t (37)
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whereDCO2
is the coefficient of diffusion of carbon dioxide in dry concrete,C0 is the carbon dioxide

concentration in the surrounding air anda is the binding capacity,i.e. the amount of carbon dioxide
necessary for complete carbonation of a concrete volume. Itis supposed that corrosion immediately
starts when carbonation has attained the rebars. Denoting by e the concrete cover, the time necessary
for corrosion to start, calledinitiation time, reads:

Tinit =
a e2

2C0 DCO2

(38)

If generalizedcorrosion is considered, the loss of metal due to corrosion is approximately uniform
over the whole surface. In this case, Faraday’s law indicates that a unit corrosion current density (or
corrosion rate) corresponds to a uniform corrosion penetration of κ = 11, 6µm/year. If a constant an-
nual corrosion rate is supposed, the expression of the rebars diameter as a function of time eventually
reads:

φ(t) =

{

φ0 if t ≤ Tinit

max[φ0 − 2 icorr κ(t− Tinit) , 0] if t > Tinit
(39)

Figure 4: Evolution in time of the rebars diameter and associated state of damage

Figure 4 sketches the evolution in time of the rebars diameter together with the associated damage on
the structure. From experimental evidence [26, 27], it is possible to associate a valueλ (representing
the relative loss of rebar’s diameter) to a given state of damage (i.e. crack initiation, severe cracking,
spalling, etc.). For instance, a value ofλ = 0.5 − 1% is consistent with the apparition of cracks.

In a probabilistic context, the random parameters are thoseappearing in Eqs.(38),(39), namely the
coefficient of diffusion of carbon dioxideDCO2

, the surface carbon dioxide concentrationC0, the
binding capacitya, the concrete covere, the rebars initial diameterφ0 and the corrosion current
densityicorr:

Z = {DCO2
, C0 , a , e , φ0 , icorr} (40)

The damage criterion is defined at a given time instant by the fact that the residual rebars diameter
(Eq.(39)) becomes smaller than a prescribed fraction(1− λ) of its initial value:

g(Z , t) = φ(t)− (1− λ)φ0 (41)
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Remarking that Eq.(39) rewrites:

φ(t) = min (φ0 , φ0 − 2 icorr κ(t− Tinit)) (42)

for reasonable values oft that do not lead to “negative” values ofφ(t), Eq.(41) becomes:

g(Z, t) = min (λφ0 , λ φ0 − 2 icorr κ(t− Tinit)) (43)

Thus the probability of failure may be interpreted as that ofa series system:

Pf (t) = P ({λφ0 ≤ 0} ∪ {λφ0 − 2 icorr κ(t− Tinit) ≤ 0}) (44)

As the rebars diameter is positive in nature, the above system event reduces to its second component.
Thus:

Pf (t) = P (λφ0 − 2 icorr κ(t− Tinit) ≤ 0) (45)

Following these remarks and using (38)), the limit state function (41) eventually reads:

g(Z , t) = λφ0 − 2 icorr κ(t− a e2

2C0 DCO2

) (46)

5.2 Probabilistic problem statement

In order to illustrate the concept of extent of damage described above, we consider a concrete beam
of lengthL = 10 m. This beam is reinforced by a single longitudinal reinforcing bar whose initial
diameter is modelled by a lognormal random variableφ0. The concrete covere(x) is a univariate
homogeneous lognormal random field, obtained by exponentiation of a Gaussian random field, whose
properties are given below. This allows to model the imperfections in placing the rebar into the
falsework.

The parameters{C0 , a} are modelled by lognormal random variables. The coefficientof diffusion
DC02

is modelled as a homogeneous lognormal random field. The corrosion current densityicorr(x)
is supposed to be inversely proportional to the concrete cover (see [6]):

icorr(x) = i0corr

e0

e(x)
(47)

In this equation,e0 = 50 mm is the mean concrete cover andi0corr is a lognormal random variable.
The above expression has the following interpretation: variablei0corr models the overall uncertainty on
the corrosion rate, whereas its spatial variability is perfectly correlated to that of the concrete cover.
The mean value of the corrosion rate is2.08 µA/cm2. The parameters describing these six input
quantities (2 random fields and 4 random variables) are gathered in Table 1.

5.3 Mean and variance of the extent of damage

The mean value of the damage length is computed by three approaches:

• Eq.(11), where the point-in-space probability of failure,obtained by freezing the spatial coor-
dinatex (i.e. replacing the random fieldse(x) andDCO2

(x) by lognormal random variables) is
computed by FORM analysis;
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Table 1: Probabilistic input data
Parameter Type of PDF Mean value Coef. Var. A.c.f†

Rebars diameterφ0 lognormal 10 mm 10 % −
Diffusion coefficientDCO2

lognormal 5.10−8 m2/s 30 % ρD(x1, x2)
Surface concentrationC0 lognormal 6.2 10−4 kg/m3 30 % −
Binding capacitya lognormal 80 kg/m3 30 % −
Nominal corrosion ratei0corr(x) lognormal 1µA/cm2 25 % −
Concrete covere(s) lognormal 50 mm 20 % ρe(x1, x2)

† Autocorrelation coefficient function of the underlying Gaussian field
ρD(x1, x2) = e−π(x1−x2)2/θ2

D , θD = 2 m ;ρe(x1, x2) = e−π(x1−x2)2/θ2
e , θe = 2 m

• Eq.(11), where the point-in-space probability of failure is obtained by Monte Carlo simulation
(100,000 samples were used);

• The field discretization approach described in Section 4.3 and Figure 3. The EOLE discretiza-
tion of both input fields was carried out using a regular grid consisting inN = 81 points over
[0, 10 m]. A numberr = 16 points was retained in the spectral decomposition (Eq.(27)) . This
allows to get a maximal relative discretization error on thefield variance of 0.1 % (as shown in
Figure 2(b) above). A total number of 10,000 spatial realizations of the limit state function was
used.
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Figure 5: Evolution in time of the mean extent of damage

The mean damage length obtained by the three approaches is plotted in Figure 5 (the values are
also gathered in Table 2, columns #2-4). An excellent agreement between the various approaches is
observed. The maximal discrepancy between FORM and the fielddiscretization approach is less than
5%, and less than 2% fort ≥ 40 years. Part of this discrepancy is due to the linearization in FORM:
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indeed, if MCS is used for evaluating the point-in-space probability of failure instead of FORM, the
latter discrepancy reduces to 3%, and less than 0.5% fort ≥ 40 years.

Time Mean value Standard deviation
(years) Eq.(11) Eq.(11) Random field Eq.(16) Eq.(16) Randomfield

MCS FORM MCS MCS FORM MCS
20 0.038 0.039 0.037 0.239 0.245 0.224
22 0.062 0.061 0.058 0.310 0.321 0.294
24 0.088 0.091 0.089 0.376 0.406 0.382
26 0.125 0.128 0.129 0.479 0.498 0.482
28 0.171 0.174 0.175 0.567 0.597 0.582
30 0.228 0.228 0.230 0.677 0.701 0.686
32 0.296 0.291 0.295 0.781 0.810 0.799
34 0.365 0.363 0.370 0.902 0.921 0.914
36 0.450 0.442 0.454 1.016 1.035 1.034
38 0.537 0.530 0.543 1.134 1.149 1.151
40 0.638 0.626 0.640 1.245 1.264 1.265
42 0.740 0.728 0.743 1.350 1.377 1.379
44 0.849 0.837 0.852 1.456 1.489 1.492
46 0.961 0.952 0.967 1.578 1.598 1.599
48 1.084 1.073 1.088 1.685 1.705 1.705
50 1.211 1.199 1.214 1.781 1.809 1.808
52 1.341 1.329 1.344 1.883 1.909 1.906
54 1.478 1.462 1.478 1.972 2.005 2.003
56 1.616 1.600 1.614 2.066 2.097 2.093
58 1.755 1.739 1.753 2.155 2.184 2.181
60 1.896 1.882 1.898 2.251 2.267 2.264

Table 2: Mean and standard deviation of the extent of damage -comparaison of approaches

The standard deviation of the extent of damage is computed bythree approaches as well:

• Eq.(16) where the system reliability problem under the integral is solved by FORM;

• Eq.(16) where this problem is solved by MCS (100,000 sampleswere used);

• the field discretization approach.

The standard deviation of the extent of damage obtained by the three approaches is plotted in Figure 6
(the values are also gathered in Table 2, columns #5-7). Hereagain, the agreement between the various
approaches is excellent. The maximal discrepancy between the analytical and the field discretization
approaches is less than 9%, and about 0.2% fort ≥ 40 years. The accuracy of the analytical formula
(Eq.(16)) increases with larger time horizons. The use of Monte Carlo simulation for evaluating the
system probability of failure (instead of FORM) does not help much. Indeed, part of the residual error
is due to the approximation in the quadrature of the integral(16).

The various algorithms to compute the mean and standard deviation of the extent of damage are
implemented in MathCad. In terms of efficiency, the field discretization approach requires about
5 hours on a standard PC (Pentium M processor at 1.6 GHz, 512MBRAM) to get the curves in
Figures 5-6, whereas the analytical approach (FORM and MCS)requires less than 2 minutes.
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Figure 6: Evolution in time of the standard deviation of the extent of damage

5.4 Histogram of the extent of damage

From the Monte Carlo simulations, it is possible to plot histograms of the extent of damage, see
Figure 7. It is first observed that there is always a non zero number of spatial realizations of the limit
state function that are strictly positive, meaning that theassociated realization of the damage length
e([0, L], t) is exactly equal to zero. In other words, there is a probability spike on zero, as shown in
Figure 7. This spike is all the greater since the time instantis smaller (the spikes in the figure are not on
scale). Similarily, when time increases (e.g.t = 60 years), another spike appears fore([0, L], t) = L.
This represents cases where the beam is fully damaged.

It clearly appears in Figure 7 that the damage length has a complex PDF. Thus its approximation by a
Gaussian PDF (ase.g. in [6]), due to the application of the central limit theorem on the summation of
independent damaged areas, is probably very rough. This is due to the fact that:

• it is impossible to discretize the structure intoreally independentsubdomains, as soon some
input parameters are modelled by random variables (i.e. spatially perfectly correlated);

• the extent of damage is by definition bounded by 0 and|D|.

5.5 Probability of no corrosion

The probability of having the beam completely sound at a given time instant (P (E([0, L], t) = 0))
is an interesting information to assess the state of damage in time. In the case of uni-dimensional
problems(d = 1) as the current example, a closed-form expression for this quantity can be derived.
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Figure 7: Histogram of the extent of damage (m) at various time instants (10,000 samples)

Indeed:

P (E([0, L], t) = 0) = 1− P (E([0, L], t) > 0) = 1− P (∃x ∈ [0, L] , g(Z(x), t) ≤ 0)

= 1− P





⋃

x∈[0,L]

g(Z(x), t) ≤ 0





(48)

where the righthand side is nothing but the space-variant probability of failure defined in Eq.(7).

This space-variant problem can be considered as aspatial first passage problem, and thus solved by
techniques developed in time-variant reliability analysis [11]. Thespatial outcrossing ratefrom the
undamaged state to the damage state is defined at each time instant by:

ν+(x, t) = lim
h−→0

P (g(Z(x), t) > 0 ∩ g(Z(x + h), t) ≤ 0) /h (49)

In case of homogeneous problems, this quantity is independent of x. If the occurrence of spatial
outcrossing is considered as a Poisson process [14, Chap. 6], the space-variant probability of failure
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may be estimated in the homogeneous case by:

P (E([0, L], t) > 0) ≈ 1− e−ν+(x0,t) (50)

where the outcrossing rate is computed at any pointx0 ∈ [0, L] due to homogeneity. Hence the
probability of no corrosion:

P (E([0, L], t) = 0) ≈ e−ν+(x0,t) (51)

The outcrossing rate may be evaluated by the PHI2 method [15,28] which is based on the solution of
the parallel system reliability problem in Eq.(49), see thereferences for details.

Table 3 gathers the probability of no corrosion at various time instants, computed either by the field
discretization approach (fraction of the number of spatialrealizations of the limit state function for
which no corrosion is observed) or by Eq.(51).

Time (years) MCS Eq.(51)
20 0.960 0.956
22 0.939 0.935
24 0.913 0.910
26 0.886 0.880
28 0.857 0.847
30 0.823 0.812
32 0.787 0.774
34 0.750 0.736
36 0.715 0.698
38 0.681 0.660
40 0.642 0.623
42 0.607 0.587
44 0.572 0.553
46 0.535 0.522
48 0.502 0.492
50 0.470 0.464
52 0.437 0.438
54 0.409 0.414
56 0.382 0.393
58 0.355 0.373
60 0.330 0.355

Table 3: Probability of no corrosion in the beam (P (E([0, L], t) = 0))

It appears that the analytical approximate formula provides an accurate estimation of the probability
of having no corrosion, the discrepancy compared to the MCS results being less than 6%. However,
it is expected that the accuracy will decrease when time increases, due to the fact that the Poissonian
assumption on the outcrossing becomes incorrect when many (possibly correlated) outcrossings occur.

5.6 Influence of the autocorrelation coefficient function

As mentioned above, the autocorrelation coefficient function for the input random fields is not well
known due to lack of data. In this section, the influence of theshape of the autocorrelation coefficient
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functionρD(x1, x2) is studied, as well as that of the scale of fluctuation. The description of the random
field modelling the concrete cover is the same as in Table 1. Asshown in Section 3.2, changing
ρD(x1, x2) will not change the expected extent of damage, but rather influence the variance of the
latter.

As the analytical approach described above allows to compute the standard deviation of the extent
of damage in a matter of seconds, it is possible to use it for carrying out a parametric study. As
an illustration, the standard deviation of the extent of damage att = 60 years is considered here.
The evolution of this quantity as a function of the scale of fluctuation of the coefficient of diffusion
DCO2

is plotted in Figure 8 for two shapes of autocorrelation coefficient functions (Type A, B), see
Eqs.(29)-(30)).
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Figure 8: Influence of the shape of the autocorrelation coefficient function and the scale of fluctuation
of DCO2

From this figure, it appears that the standard deviation is rather insensitive to the parameters. Indeed,
the value varies between -6% to +11% with respect to the original scenario presented in Section 5.3
(Type B,θD = 2 m). This is an interesting result since the shape and scale parameters of the autocor-
relation coefficient functions are difficult to infer in practice due to lack of data.
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6 Conclusions

The characterization of the extent of damage in probabilistic degradation models of structures is of
major interest, especially for optimizing maintenance policies. This requires describing the parameters
of the degradation models as random fields.

The paper presents analytical derivations for the mean and standard deviation of the extent of damage.
The former appears independent from the correlation structure of the input fields. Both quantities may
be computed by analytical formulæwithoutany discretization of the random fields.

In order to assess the accuracy of the formulæ , an efficient Monte Carlo-based framework for comput-
ing spatial realizations of the extent of damage is proposed, based on the EOLE discretization method.
On top of mean and standard deviation, the direct Monte Carlosimulation of the extent of damage
also yields histograms of the latter.

All the methods are illustrated on the example of a RC beam submitted to carbonation-induced re-
bars corrosion. The mean and standard deviation of the extent of damage obtained by the various
approaches compare very well with each other. The computational cost of the analytical approach is
about two orders of magnitude smaller than that of the directMonte Carlo simulation.

From the histograms of the extent of damage, it appears that probability spikes corresponding to
“fully sound” or “fully damaged” structures exist. The approximation of the extent of damage by a
Gaussian random variable is thus proven to be irrelevant in this context. These histograms may be
used in the context of reliability analysis,e.g. to compute the probability that the extent of damage is
greater than a given value, say 5% of the original length (or surface) of the structure. The existence of
probability spikes shall warn the analyst that classical reliability methods such as FORM/SORM may
be inappropriate for solving this problem.

Of particular interest in reliability analysis is the problem of computing the probability of having
no damage along the structure (E(D, t) = 0). A technique for computing directly this quantity is
finally proposed in the case of one-dimensional problems (see application example). This technique,
inspired by time-variant reliability methods, doesnot require the discretization of the input random
fields either.

Although illustrated on a simple degradation model, the proposed approach is quite general and could
be applied efficiently to chloride contaminated structuressuch as bridge decks.

Acknowledgments

The author would like to thank Mr G. Defaux and Dr M. Pendola (Phimeca Engineering S.A.) for fruit-
ful discussions on space-variant reliability problems. These discussions were made possible through
the joint research agreement between Electricité de France, the French Institute for Advanced Me-
chanics (IFMA, Pr. Lemaire) and Phimeca Engineering S.A.

A Proof of Eqs.(16),(17)

One-dimensional case :D = [0, L]
Supposef(x1, x2) ≡ f̃(x1−x2), wheref̃(z) is an even function of its argument. Assume the integral
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I1 =
∫ L
0

∫ L
0 f(x1, x2) dx1 dx2 exists and is to be computed. The following mapping is used:

u =
x1 + x2

L
− 1

v =
x2 − x1

L

(52)

The integral rewrites:

I1 =
L2

2

∫ 1

−1

∫ a(v)/2

−a(v)/2
f̃(Lv) du dv (53)

Since the integrand does not depend anymore onu, the integration with respect tou providesa(v).
Moreover, due to the fact that̃f is even, the integral with respect tov is twice that computed over
[0, 1]. Finally, for v ≥ 0, it is easy to show thata(v) = 2− 2v. Thus:

I1 = L2

∫ 1

0
f̃(Lv)(2 − 2v) dv (54)

Two-dimensional case :D = {(x, y) ∈ [0, L1]× [0, L2]}
Supposef(x1, y1, x2, y2) ≡ f̃(x1 − x2, y1 − y2), wheref̃(x, y) is an even function of its arguments.
The integral to be computed is of the form:

I2 =

∫ L1

x1=0

∫ L1

x2=0

∫ L2

y1=0

∫ L2

y2=0
f̃(x1 − x2, y1 − y2) dx1 dx2 dy1 dy2 (55)

The mapping in Eq.(52) can be applied on each coordinate(x, y). Thus:

I2 = L2
1L

2
2

∫ 1

0

∫ 1

0
f̃(L1 v1, L2 v2)(2 − 2v1)(2− 2v2) dv1 dv2 (56)

References

[1] S. Engelund and J. Sorensen. A probabilistic model for chloride-ingress and initiation of corro-
sion in reinforced concrete structures.Struc. Safe., 20:69–89, 1998.

[2] M. Stewart and D. Rosowsky. Time-dependent reliabilityof deteriorating reinforced concrete
bridge decks.Struc. Safe., 20:91–109, 1998.

[3] D. Val, M. Stewart, and R. Melchers. Effect of reinforcement corrosion on reliability of highway
bridges.Eng. Struc., 20:1010–1019, 1998.

[4] A.T. Vu and M. Stewart. Structural reliability of concrete bridges including improved chloride-
induced corrosion models.Struc. Safe., 22:313–333, 2000.

[5] Y. Li, T. Vrouwenvelder, T. Wijnants, and J. Walraven. Spatial variability of concrete deteriora-
tion and repair strategies.Struct. Concrete, 5:121–130, 2004.

[6] K.A.T Vu and M.G. Stewart. Predicting the likelihood andextent of reinforced concrete
corrosion-induced cracking.J. Struc. Eng., ASCE, 131(11):1681–1689, 2005.

[7] M.S. Darmawan and M. Stewart. Spatial time-dependent reliability analysis of corroding pre-
tensioned prestressed concrete bridge girders.Struc. Safe, xx:xxx, 2006. in press.

22



[8] M.G. Stewart. Spatial variability of damage and expected maintenance costs for deteriorating
RC structures.Structure and Infrastructure Engineering, 2(2):79–90, 2006.

[9] M.G. Stewart, J.A. Mullard, and B.J. Drake. Utility of spatially variable damage performance
indicators for improved safety and maintenance decisions of deteriorating infrastructure. InProc.
2nd Int. Forum Eng. Dec. Making (IFED), 2006. Lake Louise, Canada.

[10] Y. Li. Effect of spatial variability on maintenance and repair decisions for concrete structures.
PhD thesis, Delft University of Technology, 2004.

[11] A. Der Kiureghian and Y. Zhang. Space-variant finite element reliability analysis.Comp. Meth.
Appl. Mech. Eng., 168:173–183, 1999.

[12] B. Sudret, G. Defaux, and M. Pendola. Introducing spatial variability in the lifetime assessment
of a concrete beam submitted to rebar’s corrosion. InProc. 2nd Int. Forum Eng. Dec. Making
(IFED), 2006. Lake Louise, Canada.

[13] Y.S. Petryna and W.B. Krätzig. Computational framework for long-term reliability analysis of
RC structures.Comp. Meth. Appl. Mech. Eng., 194:1619–1639, 2005.

[14] R-E Melchers.Structural reliability analysis and prediction. John Wiley & Sons, 1999.

[15] C. Andrieu-Renaud, B. Sudret, and M. Lemaire. The PHI2 method : a way to compute time-
variant reliability. Rel. Eng. Sys. Safety, 84:75–86, 2004.

[16] H. Koo and A. Der Kiureghian. FORM, SORM and simulation techniques for nonlinear random
vibrations. Technical Report no UCB/SEMM-2003/01, University of California at Berkeley,
2003. 185 pages.

[17] M. Abramowitz and I. A. Stegun, editors.Handbook of mathematical functions. Dover Publica-
tions, Inc., 1970.

[18] C.C Li and A. Der Kiureghian. Optimal discretization ofrandom fields. J. Eng. Mech.,
119(6):1136–1154, 1993.

[19] B. Sudret and A. Der Kiureghian. Stochastic finite elements and reliability : A state-of-the-art
report. Technical Report no UCB/SEMM-2000/08, University of California, Berkeley, 2000.
173 pages.

[20] E. Vanmarcke.Random fields : analysis and synthesis. The MIT Press, Cambridge, Massachus-
sets, 1983.

[21] A. Der Kiureghian and J-B Ke. The stochastic finite element method in structural reliability.
Prob. Eng. Mech., 3(2):83–91, 1988.

[22] Y. Liu and R.E. Weyers. Modelling the time-to-corrosion cracking in chloride contaminated
reinforced concrete structures.ACI Mater. J., 95:675–681, 1998.

[23] Thoft-Christensen P. FEM modelling of the evolution ofcorrosion cracks in reinforced concrete
structures. In M. Maes and L. Huyse, editors,Proc. 11th IFIP WG7.5 Conference on Reliability
and Optimization of Structural Systems, Banff, Canada, pages 221–228, 2004.

23



[24] K. Bhargava, A.K. Ghosh, Y. Mori, and S. Ramanujam. Model for cover cracking due to rebar
corrosion in RC structures.Eng. Struc., 28(8):1093–1109, 2006.

[25] Coll. New approach to durability design - an example forcarbonation induced corrosion. Tech-
nical Report n◦238, Comité Euro-international du béton, 1997.

[26] C. Alonso, A. Andrade, J. Rodriguez, and J.M. Diez. Factors controlling cracking of concrete
affected by reinforcement corrosion.Materials and Structures, 31:435–441, 1998.

[27] P. Broomfield.Corrosion of Steel in Concrete. E&FN Spon, 1997.

[28] B. Sudret. Analytical derivation of the outcrossing rate in time-variant reliability problems.
Struc. Infra. Eng., 2006. to appear.

24


